

2

Mechanical Behavior of the Mushy Zone of Solidifying Steel

Lance C. Hibbeler Ph.D. Student and Lecturer

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

tinuous

Casting

onsortium

Introduction

- Hot tearing is a solidification defect that leads to poor product quality at best and a breakout at worst
- The averaging in traditional **macro-scale** models mushy zones - prevents study of the details of hot tear formation and propagation
- This work explores hot tears with a micro-scale model – of the **dendrites** themselves – by combining macro-scale information with a detailed model of the morphology of the solidification front

Microscale Domain and BC

200,000 4-node elements, 0.3-µm square 333 µm Fixed edge, $u_v = 0$, $\sigma_{xv} = 0$ ∇ ∇ \mathbf{X} \backslash $\sigma_{xx} = 0, \sigma_{xy} =$ 0 Fixed edge, Free edge, . = 0, σ_{xy} : 66 hm Solid Liquid 0 Generalized plane strain edge, $u_v = uniform$, $\sigma_{xv} = 0$ Out-of-plane assumption: generalized plane strain $u_z = uniform$ Phase field calculated with MICRESS by B. Boettger University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Lance C. Hibbeler 4

Explicit Finite Element Method

	Get accelerations from force balance	$ abla \cdot \boldsymbol{\sigma} + \boldsymbol{b} = ho \boldsymbol{a}$	$\Rightarrow a^n = M^{-1}(F_{ext}^n - F_{int}^n)$
	Integrate to get half-step velocity	$\boldsymbol{v}^{n+\frac{1}{2}} = \boldsymbol{v}^{n-\frac{1}{2}} +$	$a^n \frac{\Delta t^{n+1} + \Delta t^n}{2}$
	Integrate at half-step to get displacement	$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \boldsymbol{v}^{n+\frac{1}{2}} \Delta t^{n+1}$	
	Critical time step	$\Delta t < \frac{L_{min}}{c_d}$	L_{min} Smallest element characteristic length
	Dilational wave speed (approx. 1000 m/s)	$c_d = \sqrt{\frac{\hat{\lambda} + 2\hat{\mu}}{\rho}}$	$\hat{\mu}$ Effective shear modulus $\hat{\lambda}$ Effective Lame constant
Efficiencies from:No Newton iterations (no matrix solve)Lumped mass matrix (no matrix solve)		solve) solve)	Koric, Hibbeler, Thomas IJNME 2009
 Mass s 	caling – make density larg	ge to increase critica	ll step size
casting Consortium	Мос	leling Iss	sues
• ABAC the fin evide – The	Moc QUS/Explicit has rst solid material ent than with ABA e large step-change	trouble with , but the expl QUS/Standa	SUES the formation of anation is more ard: uses the critical time
• ABAC the fin evide – The ste	QUS/Explicit has rst solid material ent than with ABA e large step-change p to be violated	trouble with , but the expl QUS/Standa e in stiffness ca	the formation of anation is more ard: uses the critical time
 ABAC the fin evide – The ste The m accou 	Moc QUS/Explicit has rst solid material ent than with ABA e large step-change p to be violated hass scaling must b nt for the change in	trouble with , but the expl QUS/Standa e in stiffness ca	the formation of anation is more ard: uses the critical time
 ABAC the fin evide The ste The m accou phase 	QUS/Explicit has rst solid material ent than with ABA e large step-change p to be violated hass scaling must b nt for the change in e evolve	trouble with , but the expl $\Delta QUS/Standatee in stiffness cae readjusted, fa stiffness as te\Delta p Pressur$	SUES the formation of anation is more ard: uses the critical time requently, to mperature and e stress increment
 ABAC the fin evide The ste The m accou phase 	DUS/Explicit has rst solid material ent than with ABA e large step-change p to be violated mass scaling must b nt for the change in e evolve	trouble with , but the expl AQUS/Standa e in stiffness ca e readjusted, f_{i} a stiffness as te Δp Pressur $\Delta \varepsilon_{dil}$ Dilation	SUES the formation of anation is more ard: uses the critical time requently, to mperature and re stress increment al strain increment
 ABAC the fine evide evide - The ste The maccou phase ât + 	Moc QUS/Explicit has rst solid material ent than with ABA e large step-change p to be violated mass scaling must b nt for the change in e evolve $2\hat{\mu} = \frac{\Delta p}{\Lambda \epsilon_{si}} + \frac{2}{3} \frac{\Delta s: \Delta e}{\Delta e: \Delta e}$	trouble with , but the expl AQUS/Standa e in stiffness ca e readjusted, f_{i} a stiffness as ter Δp Pressur $\Delta \varepsilon_{dil}$ Dilation Δs Deviato	the formation of anation is more ard: uses the critical time requently, to mperature and re stress increment al strain increment ric stress increment

•

•

Modeling Issues

- Imposing the generalized plane strain constraint prevents parallelization (in ABAQUS/Explicit)
- Efficient solution to this problem is to calculate the shrinkage in a macroscale model (with mush) and impose time-dependent boundary conditions

Material Models

• Liquid:

nuous asting Consortium

inuous Casting

- Nearly-incompressible Newtonian fluid
- Solid
 - Zhu (ferrite) or Kozlowski III (austenite)

8

Macroscale Slice Model

Thermal Boundary Conditions

Casting Consortium

Inuous

Macroscale Model Results

Lance C. Hibbeler •

12

Acknowledgments

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- National Center for Supercomputing Applications (NCSA) at UIUC
- Dr. Bernd Boettger, ACCESS e.V.
 - See (Boettger, Apel, Santillana, and Eskin, MCWASP XIII) for more detail

16