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Introduction

• Hot tearing is a solidification defect that leads to 

poor product quality at best and a breakout at worst

• The averaging in traditional macro-scale models –

mushy zones – prevents study of the details of hot 

tear formation and propagation

• This work explores hot tears with a micro-scale

model – of the dendrites themselves – by 

combining macro-scale information with a detailed 

model of the morphology of the solidification front
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Modeling Approach

Casting 

conditions

CON1D
Solidification with mushy zone 

and ideal taper

• 1D FDM energy equation

MICRESS
Solute diffusion, solidification 

with dendrite morphology

• 2D FVM phase field

• 1D FVM energy equation

Slab surface 

temperature

macro
micro

ABAQUS
Solidification with mushy zone, 

thermo-mechanical slice model

• 2D FEM energy & momentum

macro

ABAQUS
Detailed mechanical behavior of 

liquid, solid, and dendrites

• 2D FEM energy & momentum

micro

Dendrite morphology, 

mush temperatures

Bulk shrinkage

Eulerian

Lagrangian

Lagrangian

Lagrangian

Hibbeler
Heat conduction outside 

of MICRESS window

Slab surface heat flux

Temperature
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Microscale Domain and BC
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Phase field calculated with MICRESS by B. Boettger

Out-of-plane assumption: generalized plane strain uz = uniform

200,000 4-node elements, 0.3-µm square
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Explicit Finite Element Method

Get accelerations 

from force balance

Integrate to get 

half-step velocity

Integrate at half-step 

to get displacement

Efficiencies from:

• No Newton iterations (no matrix solve)

• Lumped mass matrix (no matrix solve)

• Mass scaling – make density large to increase critical step size

Critical time step

Dilational wave speed

(approx. 1000 m/s)

Koric, Hibbeler, Thomas 

IJNME  2009
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Modeling Issues

• ABAQUS/Explicit has trouble with the formation of 

the first solid material, but the explanation is more 

evident than with ABAQUS/Standard:

– The large step-change in stiffness causes the critical time 

step to be violated

• The mass scaling must be readjusted, frequently, to 

account for the change in stiffness as temperature and 

phase evolve
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Modeling Issues

• Imposing the generalized plane strain constraint 

prevents parallelization (in ABAQUS/Explicit)

• Efficient solution to this problem is to calculate the 

shrinkage in a macroscale model (with mush) and 

impose time-dependent boundary conditions

200,000 8-node elements, 0.3-µm cube

x

y z
Top face fixed in z

Other BCs mimic 2D case
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Material Models
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• Liquid:

– Nearly-incompressible Newtonian fluid 

• Solid
– Zhu (ferrite) or Kozlowski III (austenite)
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Macroscale Slice Model

Prescribed heat flux

Insulated

Insulated In
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Equal perpendicular displacement

Zero perpendicular displacement

Zero perpendicular 
displacement

Mechanical Boundary Conditions

• Material properties from CON1D

• Mushy zone solidification

Domain

Liquid material

Solid material
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Macroscale Model Results
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Macroscale Total Strain

• Extract the total strain and its rate from the macroscale model

• Use piecewise approximation to eliminate noise from solidifying nodes

�� � �0.1135	� � 0.0035

�� � �0.0076	� � 0.0020

�� � �0.0030	ln � � 0.0083

�� � 0 0	s						 � � � 0.03	s

0.03	s � � � 0.05	s

0.05	s � � � 0.34	s

0.34	s � � � 10.0	s
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• MICRESS uses a moving Eulerian (spatial) 

description, where the mesh follows the 

solidification front of stationary material

• ABAQUS uses a Lagrangian (material) description, 

where the mesh is fixed on the material

Descriptions of Motion
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Eulerian—Lagrangian Conversion

• The “window” of data from MICRESS is 
patched into an ABAQUS domain according 
to how the Eulerian simulation has moved

Fraction Solid = 1 Fraction Solid = 0MICRESS Fraction Solid = f(x,y)
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Eulerian—Lagrangian Conversion

• Outside of the MICRESS window, the 1D heat 
conduction equation is solved with temperature and 
heat flux boundaries

• In the Python script that builds the ABAQUS file

• Temperature is continuous at boundaries of 
MICRESS window

MICRESS Temperature = f(x)
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Eulerian Dendrite Movement
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